services / Underwater solutions
ROV (Remotely Operated Vehicle)
A remotely operated underwater vehicle (technically ROUV but commonly just ROV) is a tethered underwater mobile device. This meaning is different from remote control vehicles operating on land or in the air. ROVs are unoccupied, usually highly maneuverable, and operated by a crew either aboard a vessel/floating platform or on proximate land. They are common in deep water industries such as offshore hydrocarbon extraction. They are linked to a host ship by a neutrally buoyant tether or, often when working in rough conditions or in deeper water, a load-carrying umbilical cable is used along with a tether management system (TMS). The TMS is either a garage-like device which contains the ROV during lowering through the splash zone or, on larger work-class ROVs, a separate assembly which sits on top of the ROV. The purpose of the TMS is to lengthen and shorten the tether so the effect of cable drag where there are underwater currents is minimized. The umbilical cable is an armored cable that contains a group of electrical conductors and fiber optics that carry electric power, video, and data signals between the operator and the TMS. Where used, the TMS then relays the signals and power for the ROV down the tether cable. Once at the ROV, the electric power is distributed between the components of the ROV. However, in high-power applications, most of the electric power drives a high-power electric motor which drives a hydraulic pump. The pump is then used for propulsion and to power equipment such as torque tools and manipulator arms where electric motors would be too difficult to implement subsea. Most ROVs are equipped with at least a video camera and lights. Additional equipment is commonly added to expand the vehicle’s capabilities. These may include sonars, magnetometers, a still camera, a manipulator or cutting arm, water samplers, and instruments that measure water clarity, water temperature, water density, sound velocity, light penetration, and temperature.[1] Also optical-stereo cameras have been mounted on ROVs in order to improve the pilots’ perception of the underwater
Sub-bottom profiling (SBP)
Sub-bottom profiling (SBP), in this case, refers to the high-resolution characterization of sediments and rock under bodies of water using tow-able chirp/ping system.
Marine geological profiling allows us to detect and to map interfaces between the various sedimentary layers or the overburden / bedrock interface beneath a body of water. The technique is based on the principles of seismic reflection, i.e. the emission of a seismic wave into the subsurface, and the reception of the energy reflected by the various interfaces.
With SBP systems, there is a trade-off between resolution and signal penetration. Geophysics GPR has a range of frequencies available to meet your requirements.
Sub-bottom profiling systems identify and measure various marine sediment layers that exist below the sediment/water interface. These acoustic systems use a technique that is similar to single beam echo sounders. A sound source emits an acoustic signal vertically downwards into the water and a receiver monitors the return signal that has been reflected off the sea floor. Some of the acoustic signal will penetrate the seabed and be reflected when it encounters a boundary between two layers that have different acoustic impedance. The system uses this reflected energy to provide information on sediment layers beneath the sediment-water interface.
Acoustic impedance is related to the density of the material and the rate at which sound travels through the material. When there is a change in acoustic impedance, such as the water-sediment interface, part of the transmitted sound is reflected. However, some of the sound energy penetrates through the boundary and into the sediments. This energy is reflected when it encounters boundaries between deeper sediment layers having different acoustic impedance. The system uses the energy reflected by these layers to create a profile of the marine sediments. Several sonar parameters (output power, signal frequency, pulse length and processing techniques) affect the instrument performance.
Multibeam sonar
A multibeam echosounder is a type of sonar that is used to map the seabed. Like other sonar systems, multibeam systems emit sound waves in a fan shape beneath a ship’s hull. The amount of time it takes for the sound waves to bounce off the seabed and return to a receiver is used to determine water depth. Unlike other sonars, multibeam systems use beamforming to extract directional information from the returning soundwaves, producing a swath of depth readings from a single ping. A multibeam echosounder is a device typically used by hydrographic surveyors to determine the depth of water and the nature of the seabed. Most modern systems work by transmitting a broad acoustic fan shaped pulse from a specially designed transducer across the full swath acrosstrack with a narrow alongtrack then forming multiple receive beams (beamforming) that are much narrower in the acrosstrack (around 1 degree depending on the system). From this narrow beam, a two way travel time of the acoustic pulse is then established utilizing a bottom detection algorithm. If the speed of sound in water is known for the full water column profile, the depth and position of the return signal can be determined from the receive angle and the two-way travel time.In order to determine the transmit and receive angle of each beam, a multibeam echosounder requires accurate measurement of the motion of the sonar relative to a cartesian coordinate system. The measured values are typically heave, pitch, roll, yaw, and heading.To compensate for signal loss due to spreading and absorption a time-varied gain circuit is designed into the receiver.For deep water systems, a steerable transmit beam is required to compensate for pitch. This can also be accomplished with beamforming.
Side Scan Imaging
Side-scan sonar (also sometimes called side scan sonar, sidescan sonar, side imaging sonar, side-imaging sonar and bottom classification sonar) is a category of sonar system that is used to efficiently create an image of large areas of the sea floor.
The earliest side-scan sonars used a single conical-beam transducer. Next, units were made with two transducers to cover both sides. The transducers were either contained in one hull-mounted package or with two packages on either side of the vessel. Next the transducers evolved to fan-shaped beams to produce a better “sonogram” or sonar image. In order to get closer to the bottom in deep water the side-scan transducers were placed in a “tow fish” and pulled by a tow cable.
Up until the mid-1980s, commercial side scan images were produced on paper records. The early paper records were produced with a sweeping plotter that burned the image into a scrolling paper record. Later plotters allowed for the simultaneous plotting of position and ship motion information onto the paper record. In the late 1980s, commercial systems using the newer, cheaper computer systems developed digital scan-converters that could mimic more cheaply the analog scan converters used by the military systems to produce TV and computer displayed images of the scan, and store them on video tape. Currently data is stored on computer hard drives or solid-state media.